123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170 |
- // Copyright 2015 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package pkcs12
- import (
- "bytes"
- "crypto/sha1"
- "math/big"
- )
- var (
- one = big.NewInt(1)
- )
- // sha1Sum returns the SHA-1 hash of in.
- func sha1Sum(in []byte) []byte {
- sum := sha1.Sum(in)
- return sum[:]
- }
- // fillWithRepeats returns v*ceiling(len(pattern) / v) bytes consisting of
- // repeats of pattern.
- func fillWithRepeats(pattern []byte, v int) []byte {
- if len(pattern) == 0 {
- return nil
- }
- outputLen := v * ((len(pattern) + v - 1) / v)
- return bytes.Repeat(pattern, (outputLen+len(pattern)-1)/len(pattern))[:outputLen]
- }
- func pbkdf(hash func([]byte) []byte, u, v int, salt, password []byte, r int, ID byte, size int) (key []byte) {
- // implementation of https://tools.ietf.org/html/rfc7292#appendix-B.2 , RFC text verbatim in comments
- // Let H be a hash function built around a compression function f:
- // Z_2^u x Z_2^v -> Z_2^u
- // (that is, H has a chaining variable and output of length u bits, and
- // the message input to the compression function of H is v bits). The
- // values for u and v are as follows:
- // HASH FUNCTION VALUE u VALUE v
- // MD2, MD5 128 512
- // SHA-1 160 512
- // SHA-224 224 512
- // SHA-256 256 512
- // SHA-384 384 1024
- // SHA-512 512 1024
- // SHA-512/224 224 1024
- // SHA-512/256 256 1024
- // Furthermore, let r be the iteration count.
- // We assume here that u and v are both multiples of 8, as are the
- // lengths of the password and salt strings (which we denote by p and s,
- // respectively) and the number n of pseudorandom bits required. In
- // addition, u and v are of course non-zero.
- // For information on security considerations for MD5 [19], see [25] and
- // [1], and on those for MD2, see [18].
- // The following procedure can be used to produce pseudorandom bits for
- // a particular "purpose" that is identified by a byte called "ID".
- // This standard specifies 3 different values for the ID byte:
- // 1. If ID=1, then the pseudorandom bits being produced are to be used
- // as key material for performing encryption or decryption.
- // 2. If ID=2, then the pseudorandom bits being produced are to be used
- // as an IV (Initial Value) for encryption or decryption.
- // 3. If ID=3, then the pseudorandom bits being produced are to be used
- // as an integrity key for MACing.
- // 1. Construct a string, D (the "diversifier"), by concatenating v/8
- // copies of ID.
- var D []byte
- for i := 0; i < v; i++ {
- D = append(D, ID)
- }
- // 2. Concatenate copies of the salt together to create a string S of
- // length v(ceiling(s/v)) bits (the final copy of the salt may be
- // truncated to create S). Note that if the salt is the empty
- // string, then so is S.
- S := fillWithRepeats(salt, v)
- // 3. Concatenate copies of the password together to create a string P
- // of length v(ceiling(p/v)) bits (the final copy of the password
- // may be truncated to create P). Note that if the password is the
- // empty string, then so is P.
- P := fillWithRepeats(password, v)
- // 4. Set I=S||P to be the concatenation of S and P.
- I := append(S, P...)
- // 5. Set c=ceiling(n/u).
- c := (size + u - 1) / u
- // 6. For i=1, 2, ..., c, do the following:
- A := make([]byte, c*20)
- var IjBuf []byte
- for i := 0; i < c; i++ {
- // A. Set A2=H^r(D||I). (i.e., the r-th hash of D||1,
- // H(H(H(... H(D||I))))
- Ai := hash(append(D, I...))
- for j := 1; j < r; j++ {
- Ai = hash(Ai)
- }
- copy(A[i*20:], Ai[:])
- if i < c-1 { // skip on last iteration
- // B. Concatenate copies of Ai to create a string B of length v
- // bits (the final copy of Ai may be truncated to create B).
- var B []byte
- for len(B) < v {
- B = append(B, Ai[:]...)
- }
- B = B[:v]
- // C. Treating I as a concatenation I_0, I_1, ..., I_(k-1) of v-bit
- // blocks, where k=ceiling(s/v)+ceiling(p/v), modify I by
- // setting I_j=(I_j+B+1) mod 2^v for each j.
- {
- Bbi := new(big.Int).SetBytes(B)
- Ij := new(big.Int)
- for j := 0; j < len(I)/v; j++ {
- Ij.SetBytes(I[j*v : (j+1)*v])
- Ij.Add(Ij, Bbi)
- Ij.Add(Ij, one)
- Ijb := Ij.Bytes()
- // We expect Ijb to be exactly v bytes,
- // if it is longer or shorter we must
- // adjust it accordingly.
- if len(Ijb) > v {
- Ijb = Ijb[len(Ijb)-v:]
- }
- if len(Ijb) < v {
- if IjBuf == nil {
- IjBuf = make([]byte, v)
- }
- bytesShort := v - len(Ijb)
- for i := 0; i < bytesShort; i++ {
- IjBuf[i] = 0
- }
- copy(IjBuf[bytesShort:], Ijb)
- Ijb = IjBuf
- }
- copy(I[j*v:(j+1)*v], Ijb)
- }
- }
- }
- }
- // 7. Concatenate A_1, A_2, ..., A_c together to form a pseudorandom
- // bit string, A.
- // 8. Use the first n bits of A as the output of this entire process.
- return A[:size]
- // If the above process is being used to generate a DES key, the process
- // should be used to create 64 random bits, and the key's parity bits
- // should be set after the 64 bits have been produced. Similar concerns
- // hold for 2-key and 3-key triple-DES keys, for CDMF keys, and for any
- // similar keys with parity bits "built into them".
- }
|