123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219 |
- // Copyright 2012 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package bn256
- // For details of the algorithms used, see "Multiplication and Squaring on
- // Pairing-Friendly Fields, Devegili et al.
- // http://eprint.iacr.org/2006/471.pdf.
- import (
- "math/big"
- )
- // gfP2 implements a field of size p² as a quadratic extension of the base
- // field where i²=-1.
- type gfP2 struct {
- x, y *big.Int // value is xi+y.
- }
- func newGFp2(pool *bnPool) *gfP2 {
- return &gfP2{pool.Get(), pool.Get()}
- }
- func (e *gfP2) String() string {
- x := new(big.Int).Mod(e.x, p)
- y := new(big.Int).Mod(e.y, p)
- return "(" + x.String() + "," + y.String() + ")"
- }
- func (e *gfP2) Put(pool *bnPool) {
- pool.Put(e.x)
- pool.Put(e.y)
- }
- func (e *gfP2) Set(a *gfP2) *gfP2 {
- e.x.Set(a.x)
- e.y.Set(a.y)
- return e
- }
- func (e *gfP2) SetZero() *gfP2 {
- e.x.SetInt64(0)
- e.y.SetInt64(0)
- return e
- }
- func (e *gfP2) SetOne() *gfP2 {
- e.x.SetInt64(0)
- e.y.SetInt64(1)
- return e
- }
- func (e *gfP2) Minimal() {
- if e.x.Sign() < 0 || e.x.Cmp(p) >= 0 {
- e.x.Mod(e.x, p)
- }
- if e.y.Sign() < 0 || e.y.Cmp(p) >= 0 {
- e.y.Mod(e.y, p)
- }
- }
- func (e *gfP2) IsZero() bool {
- return e.x.Sign() == 0 && e.y.Sign() == 0
- }
- func (e *gfP2) IsOne() bool {
- if e.x.Sign() != 0 {
- return false
- }
- words := e.y.Bits()
- return len(words) == 1 && words[0] == 1
- }
- func (e *gfP2) Conjugate(a *gfP2) *gfP2 {
- e.y.Set(a.y)
- e.x.Neg(a.x)
- return e
- }
- func (e *gfP2) Negative(a *gfP2) *gfP2 {
- e.x.Neg(a.x)
- e.y.Neg(a.y)
- return e
- }
- func (e *gfP2) Add(a, b *gfP2) *gfP2 {
- e.x.Add(a.x, b.x)
- e.y.Add(a.y, b.y)
- return e
- }
- func (e *gfP2) Sub(a, b *gfP2) *gfP2 {
- e.x.Sub(a.x, b.x)
- e.y.Sub(a.y, b.y)
- return e
- }
- func (e *gfP2) Double(a *gfP2) *gfP2 {
- e.x.Lsh(a.x, 1)
- e.y.Lsh(a.y, 1)
- return e
- }
- func (c *gfP2) Exp(a *gfP2, power *big.Int, pool *bnPool) *gfP2 {
- sum := newGFp2(pool)
- sum.SetOne()
- t := newGFp2(pool)
- for i := power.BitLen() - 1; i >= 0; i-- {
- t.Square(sum, pool)
- if power.Bit(i) != 0 {
- sum.Mul(t, a, pool)
- } else {
- sum.Set(t)
- }
- }
- c.Set(sum)
- sum.Put(pool)
- t.Put(pool)
- return c
- }
- // See "Multiplication and Squaring in Pairing-Friendly Fields",
- // http://eprint.iacr.org/2006/471.pdf
- func (e *gfP2) Mul(a, b *gfP2, pool *bnPool) *gfP2 {
- tx := pool.Get().Mul(a.x, b.y)
- t := pool.Get().Mul(b.x, a.y)
- tx.Add(tx, t)
- tx.Mod(tx, p)
- ty := pool.Get().Mul(a.y, b.y)
- t.Mul(a.x, b.x)
- ty.Sub(ty, t)
- e.y.Mod(ty, p)
- e.x.Set(tx)
- pool.Put(tx)
- pool.Put(ty)
- pool.Put(t)
- return e
- }
- func (e *gfP2) MulScalar(a *gfP2, b *big.Int) *gfP2 {
- e.x.Mul(a.x, b)
- e.y.Mul(a.y, b)
- return e
- }
- // MulXi sets e=ξa where ξ=i+3 and then returns e.
- func (e *gfP2) MulXi(a *gfP2, pool *bnPool) *gfP2 {
- // (xi+y)(i+3) = (3x+y)i+(3y-x)
- tx := pool.Get().Lsh(a.x, 1)
- tx.Add(tx, a.x)
- tx.Add(tx, a.y)
- ty := pool.Get().Lsh(a.y, 1)
- ty.Add(ty, a.y)
- ty.Sub(ty, a.x)
- e.x.Set(tx)
- e.y.Set(ty)
- pool.Put(tx)
- pool.Put(ty)
- return e
- }
- func (e *gfP2) Square(a *gfP2, pool *bnPool) *gfP2 {
- // Complex squaring algorithm:
- // (xi+b)² = (x+y)(y-x) + 2*i*x*y
- t1 := pool.Get().Sub(a.y, a.x)
- t2 := pool.Get().Add(a.x, a.y)
- ty := pool.Get().Mul(t1, t2)
- ty.Mod(ty, p)
- t1.Mul(a.x, a.y)
- t1.Lsh(t1, 1)
- e.x.Mod(t1, p)
- e.y.Set(ty)
- pool.Put(t1)
- pool.Put(t2)
- pool.Put(ty)
- return e
- }
- func (e *gfP2) Invert(a *gfP2, pool *bnPool) *gfP2 {
- // See "Implementing cryptographic pairings", M. Scott, section 3.2.
- // ftp://136.206.11.249/pub/crypto/pairings.pdf
- t := pool.Get()
- t.Mul(a.y, a.y)
- t2 := pool.Get()
- t2.Mul(a.x, a.x)
- t.Add(t, t2)
- inv := pool.Get()
- inv.ModInverse(t, p)
- e.x.Neg(a.x)
- e.x.Mul(e.x, inv)
- e.x.Mod(e.x, p)
- e.y.Mul(a.y, inv)
- e.y.Mod(e.y, p)
- pool.Put(t)
- pool.Put(t2)
- pool.Put(inv)
- return e
- }
|