123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303 |
- package kcp
- import (
- "encoding/binary"
- "sync/atomic"
- "github.com/templexxx/reedsolomon"
- )
- const (
- fecHeaderSize = 6
- fecHeaderSizePlus2 = fecHeaderSize + 2 // plus 2B data size
- typeData = 0xf1
- typeFEC = 0xf2
- )
- type (
- // fecPacket is a decoded FEC packet
- fecPacket struct {
- seqid uint32
- flag uint16
- data []byte
- }
- // fecDecoder for decoding incoming packets
- fecDecoder struct {
- rxlimit int // queue size limit
- dataShards int
- parityShards int
- shardSize int
- rx []fecPacket // ordered receive queue
- // caches
- decodeCache [][]byte
- flagCache []bool
- // RS decoder
- codec reedsolomon.Encoder
- }
- )
- func newFECDecoder(rxlimit, dataShards, parityShards int) *fecDecoder {
- if dataShards <= 0 || parityShards <= 0 {
- return nil
- }
- if rxlimit < dataShards+parityShards {
- return nil
- }
- fec := new(fecDecoder)
- fec.rxlimit = rxlimit
- fec.dataShards = dataShards
- fec.parityShards = parityShards
- fec.shardSize = dataShards + parityShards
- enc, err := reedsolomon.New(dataShards, parityShards)
- if err != nil {
- return nil
- }
- fec.codec = enc
- fec.decodeCache = make([][]byte, fec.shardSize)
- fec.flagCache = make([]bool, fec.shardSize)
- return fec
- }
- // decodeBytes a fec packet
- func (dec *fecDecoder) decodeBytes(data []byte) fecPacket {
- var pkt fecPacket
- pkt.seqid = binary.LittleEndian.Uint32(data)
- pkt.flag = binary.LittleEndian.Uint16(data[4:])
- // allocate memory & copy
- buf := xmitBuf.Get().([]byte)[:len(data)-6]
- copy(buf, data[6:])
- pkt.data = buf
- return pkt
- }
- // decode a fec packet
- func (dec *fecDecoder) decode(pkt fecPacket) (recovered [][]byte) {
- // insertion
- n := len(dec.rx) - 1
- insertIdx := 0
- for i := n; i >= 0; i-- {
- if pkt.seqid == dec.rx[i].seqid { // de-duplicate
- xmitBuf.Put(pkt.data)
- return nil
- } else if _itimediff(pkt.seqid, dec.rx[i].seqid) > 0 { // insertion
- insertIdx = i + 1
- break
- }
- }
- // insert into ordered rx queue
- if insertIdx == n+1 {
- dec.rx = append(dec.rx, pkt)
- } else {
- dec.rx = append(dec.rx, fecPacket{})
- copy(dec.rx[insertIdx+1:], dec.rx[insertIdx:]) // shift right
- dec.rx[insertIdx] = pkt
- }
- // shard range for current packet
- shardBegin := pkt.seqid - pkt.seqid%uint32(dec.shardSize)
- shardEnd := shardBegin + uint32(dec.shardSize) - 1
- // max search range in ordered queue for current shard
- searchBegin := insertIdx - int(pkt.seqid%uint32(dec.shardSize))
- if searchBegin < 0 {
- searchBegin = 0
- }
- searchEnd := searchBegin + dec.shardSize - 1
- if searchEnd >= len(dec.rx) {
- searchEnd = len(dec.rx) - 1
- }
- // re-construct datashards
- if searchEnd-searchBegin+1 >= dec.dataShards {
- var numshard, numDataShard, first, maxlen int
- // zero cache
- shards := dec.decodeCache
- shardsflag := dec.flagCache
- for k := range dec.decodeCache {
- shards[k] = nil
- shardsflag[k] = false
- }
- // shard assembly
- for i := searchBegin; i <= searchEnd; i++ {
- seqid := dec.rx[i].seqid
- if _itimediff(seqid, shardEnd) > 0 {
- break
- } else if _itimediff(seqid, shardBegin) >= 0 {
- shards[seqid%uint32(dec.shardSize)] = dec.rx[i].data
- shardsflag[seqid%uint32(dec.shardSize)] = true
- numshard++
- if dec.rx[i].flag == typeData {
- numDataShard++
- }
- if numshard == 1 {
- first = i
- }
- if len(dec.rx[i].data) > maxlen {
- maxlen = len(dec.rx[i].data)
- }
- }
- }
- if numDataShard == dec.dataShards {
- // case 1: no lost data shards
- dec.rx = dec.freeRange(first, numshard, dec.rx)
- } else if numshard >= dec.dataShards {
- // case 2: data shard lost, but recoverable from parity shard
- for k := range shards {
- if shards[k] != nil {
- dlen := len(shards[k])
- shards[k] = shards[k][:maxlen]
- xorBytes(shards[k][dlen:], shards[k][dlen:], shards[k][dlen:])
- }
- }
- if err := dec.codec.ReconstructData(shards); err == nil {
- for k := range shards[:dec.dataShards] {
- if !shardsflag[k] {
- recovered = append(recovered, shards[k])
- }
- }
- }
- dec.rx = dec.freeRange(first, numshard, dec.rx)
- }
- }
- // keep rxlimit
- if len(dec.rx) > dec.rxlimit {
- if dec.rx[0].flag == typeData { // record unrecoverable data
- atomic.AddUint64(&DefaultSnmp.FECShortShards, 1)
- }
- dec.rx = dec.freeRange(0, 1, dec.rx)
- }
- return
- }
- // free a range of fecPacket, and zero for GC recycling
- func (dec *fecDecoder) freeRange(first, n int, q []fecPacket) []fecPacket {
- for i := first; i < first+n; i++ { // free
- xmitBuf.Put(q[i].data)
- }
- copy(q[first:], q[first+n:])
- for i := 0; i < n; i++ { // dereference data
- q[len(q)-1-i].data = nil
- }
- return q[:len(q)-n]
- }
- type (
- // fecEncoder for encoding outgoing packets
- fecEncoder struct {
- dataShards int
- parityShards int
- shardSize int
- paws uint32 // Protect Against Wrapped Sequence numbers
- next uint32 // next seqid
- shardCount int // count the number of datashards collected
- maxSize int // record maximum data length in datashard
- headerOffset int // FEC header offset
- payloadOffset int // FEC payload offset
- // caches
- shardCache [][]byte
- encodeCache [][]byte
- // RS encoder
- codec reedsolomon.Encoder
- }
- )
- func newFECEncoder(dataShards, parityShards, offset int) *fecEncoder {
- if dataShards <= 0 || parityShards <= 0 {
- return nil
- }
- fec := new(fecEncoder)
- fec.dataShards = dataShards
- fec.parityShards = parityShards
- fec.shardSize = dataShards + parityShards
- fec.paws = (0xffffffff/uint32(fec.shardSize) - 1) * uint32(fec.shardSize)
- fec.headerOffset = offset
- fec.payloadOffset = fec.headerOffset + fecHeaderSize
- enc, err := reedsolomon.New(dataShards, parityShards)
- if err != nil {
- return nil
- }
- fec.codec = enc
- // caches
- fec.encodeCache = make([][]byte, fec.shardSize)
- fec.shardCache = make([][]byte, fec.shardSize)
- for k := range fec.shardCache {
- fec.shardCache[k] = make([]byte, mtuLimit)
- }
- return fec
- }
- // encode the packet, output parity shards if we have enough datashards
- // the content of returned parityshards will change in next encode
- func (enc *fecEncoder) encode(b []byte) (ps [][]byte) {
- enc.markData(b[enc.headerOffset:])
- binary.LittleEndian.PutUint16(b[enc.payloadOffset:], uint16(len(b[enc.payloadOffset:])))
- // copy data to fec datashards
- sz := len(b)
- enc.shardCache[enc.shardCount] = enc.shardCache[enc.shardCount][:sz]
- copy(enc.shardCache[enc.shardCount], b)
- enc.shardCount++
- // record max datashard length
- if sz > enc.maxSize {
- enc.maxSize = sz
- }
- // calculate Reed-Solomon Erasure Code
- if enc.shardCount == enc.dataShards {
- // bzero each datashard's tail
- for i := 0; i < enc.dataShards; i++ {
- shard := enc.shardCache[i]
- slen := len(shard)
- xorBytes(shard[slen:enc.maxSize], shard[slen:enc.maxSize], shard[slen:enc.maxSize])
- }
- // construct equal-sized slice with stripped header
- cache := enc.encodeCache
- for k := range cache {
- cache[k] = enc.shardCache[k][enc.payloadOffset:enc.maxSize]
- }
- // rs encode
- if err := enc.codec.Encode(cache); err == nil {
- ps = enc.shardCache[enc.dataShards:]
- for k := range ps {
- enc.markFEC(ps[k][enc.headerOffset:])
- ps[k] = ps[k][:enc.maxSize]
- }
- }
- // reset counters to zero
- enc.shardCount = 0
- enc.maxSize = 0
- }
- return
- }
- func (enc *fecEncoder) markData(data []byte) {
- binary.LittleEndian.PutUint32(data, enc.next)
- binary.LittleEndian.PutUint16(data[4:], typeData)
- enc.next++
- }
- func (enc *fecEncoder) markFEC(data []byte) {
- binary.LittleEndian.PutUint32(data, enc.next)
- binary.LittleEndian.PutUint16(data[4:], typeFEC)
- enc.next = (enc.next + 1) % enc.paws
- }
|