123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306 |
- // Copyright 2014 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package sha3
- // Tests include all the ShortMsgKATs provided by the Keccak team at
- // https://github.com/gvanas/KeccakCodePackage
- //
- // They only include the zero-bit case of the bitwise testvectors
- // published by NIST in the draft of FIPS-202.
- import (
- "bytes"
- "compress/flate"
- "encoding/hex"
- "encoding/json"
- "hash"
- "os"
- "strings"
- "testing"
- )
- const (
- testString = "brekeccakkeccak koax koax"
- katFilename = "testdata/keccakKats.json.deflate"
- )
- // Internal-use instances of SHAKE used to test against KATs.
- func newHashShake128() hash.Hash {
- return &state{rate: 168, dsbyte: 0x1f, outputLen: 512}
- }
- func newHashShake256() hash.Hash {
- return &state{rate: 136, dsbyte: 0x1f, outputLen: 512}
- }
- // testDigests contains functions returning hash.Hash instances
- // with output-length equal to the KAT length for both SHA-3 and
- // SHAKE instances.
- var testDigests = map[string]func() hash.Hash{
- "SHA3-224": New224,
- "SHA3-256": New256,
- "SHA3-384": New384,
- "SHA3-512": New512,
- "SHAKE128": newHashShake128,
- "SHAKE256": newHashShake256,
- }
- // testShakes contains functions that return ShakeHash instances for
- // testing the ShakeHash-specific interface.
- var testShakes = map[string]func() ShakeHash{
- "SHAKE128": NewShake128,
- "SHAKE256": NewShake256,
- }
- // decodeHex converts a hex-encoded string into a raw byte string.
- func decodeHex(s string) []byte {
- b, err := hex.DecodeString(s)
- if err != nil {
- panic(err)
- }
- return b
- }
- // structs used to marshal JSON test-cases.
- type KeccakKats struct {
- Kats map[string][]struct {
- Digest string `json:"digest"`
- Length int64 `json:"length"`
- Message string `json:"message"`
- }
- }
- func testUnalignedAndGeneric(t *testing.T, testf func(impl string)) {
- xorInOrig, copyOutOrig := xorIn, copyOut
- xorIn, copyOut = xorInGeneric, copyOutGeneric
- testf("generic")
- if xorImplementationUnaligned != "generic" {
- xorIn, copyOut = xorInUnaligned, copyOutUnaligned
- testf("unaligned")
- }
- xorIn, copyOut = xorInOrig, copyOutOrig
- }
- // TestKeccakKats tests the SHA-3 and Shake implementations against all the
- // ShortMsgKATs from https://github.com/gvanas/KeccakCodePackage
- // (The testvectors are stored in keccakKats.json.deflate due to their length.)
- func TestKeccakKats(t *testing.T) {
- testUnalignedAndGeneric(t, func(impl string) {
- // Read the KATs.
- deflated, err := os.Open(katFilename)
- if err != nil {
- t.Errorf("error opening %s: %s", katFilename, err)
- }
- file := flate.NewReader(deflated)
- dec := json.NewDecoder(file)
- var katSet KeccakKats
- err = dec.Decode(&katSet)
- if err != nil {
- t.Errorf("error decoding KATs: %s", err)
- }
- // Do the KATs.
- for functionName, kats := range katSet.Kats {
- d := testDigests[functionName]()
- for _, kat := range kats {
- d.Reset()
- in, err := hex.DecodeString(kat.Message)
- if err != nil {
- t.Errorf("error decoding KAT: %s", err)
- }
- d.Write(in[:kat.Length/8])
- got := strings.ToUpper(hex.EncodeToString(d.Sum(nil)))
- if got != kat.Digest {
- t.Errorf("function=%s, implementation=%s, length=%d\nmessage:\n %s\ngot:\n %s\nwanted:\n %s",
- functionName, impl, kat.Length, kat.Message, got, kat.Digest)
- t.Logf("wanted %+v", kat)
- t.FailNow()
- }
- continue
- }
- }
- })
- }
- // TestUnalignedWrite tests that writing data in an arbitrary pattern with
- // small input buffers.
- func testUnalignedWrite(t *testing.T) {
- testUnalignedAndGeneric(t, func(impl string) {
- buf := sequentialBytes(0x10000)
- for alg, df := range testDigests {
- d := df()
- d.Reset()
- d.Write(buf)
- want := d.Sum(nil)
- d.Reset()
- for i := 0; i < len(buf); {
- // Cycle through offsets which make a 137 byte sequence.
- // Because 137 is prime this sequence should exercise all corner cases.
- offsets := [17]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1}
- for _, j := range offsets {
- if v := len(buf) - i; v < j {
- j = v
- }
- d.Write(buf[i : i+j])
- i += j
- }
- }
- got := d.Sum(nil)
- if !bytes.Equal(got, want) {
- t.Errorf("Unaligned writes, implementation=%s, alg=%s\ngot %q, want %q", impl, alg, got, want)
- }
- }
- })
- }
- // TestAppend checks that appending works when reallocation is necessary.
- func TestAppend(t *testing.T) {
- testUnalignedAndGeneric(t, func(impl string) {
- d := New224()
- for capacity := 2; capacity <= 66; capacity += 64 {
- // The first time around the loop, Sum will have to reallocate.
- // The second time, it will not.
- buf := make([]byte, 2, capacity)
- d.Reset()
- d.Write([]byte{0xcc})
- buf = d.Sum(buf)
- expected := "0000DF70ADC49B2E76EEE3A6931B93FA41841C3AF2CDF5B32A18B5478C39"
- if got := strings.ToUpper(hex.EncodeToString(buf)); got != expected {
- t.Errorf("got %s, want %s", got, expected)
- }
- }
- })
- }
- // TestAppendNoRealloc tests that appending works when no reallocation is necessary.
- func TestAppendNoRealloc(t *testing.T) {
- testUnalignedAndGeneric(t, func(impl string) {
- buf := make([]byte, 1, 200)
- d := New224()
- d.Write([]byte{0xcc})
- buf = d.Sum(buf)
- expected := "00DF70ADC49B2E76EEE3A6931B93FA41841C3AF2CDF5B32A18B5478C39"
- if got := strings.ToUpper(hex.EncodeToString(buf)); got != expected {
- t.Errorf("%s: got %s, want %s", impl, got, expected)
- }
- })
- }
- // TestSqueezing checks that squeezing the full output a single time produces
- // the same output as repeatedly squeezing the instance.
- func TestSqueezing(t *testing.T) {
- testUnalignedAndGeneric(t, func(impl string) {
- for functionName, newShakeHash := range testShakes {
- d0 := newShakeHash()
- d0.Write([]byte(testString))
- ref := make([]byte, 32)
- d0.Read(ref)
- d1 := newShakeHash()
- d1.Write([]byte(testString))
- var multiple []byte
- for _ = range ref {
- one := make([]byte, 1)
- d1.Read(one)
- multiple = append(multiple, one...)
- }
- if !bytes.Equal(ref, multiple) {
- t.Errorf("%s (%s): squeezing %d bytes one at a time failed", functionName, impl, len(ref))
- }
- }
- })
- }
- // sequentialBytes produces a buffer of size consecutive bytes 0x00, 0x01, ..., used for testing.
- func sequentialBytes(size int) []byte {
- result := make([]byte, size)
- for i := range result {
- result[i] = byte(i)
- }
- return result
- }
- // BenchmarkPermutationFunction measures the speed of the permutation function
- // with no input data.
- func BenchmarkPermutationFunction(b *testing.B) {
- b.SetBytes(int64(200))
- var lanes [25]uint64
- for i := 0; i < b.N; i++ {
- keccakF1600(&lanes)
- }
- }
- // benchmarkHash tests the speed to hash num buffers of buflen each.
- func benchmarkHash(b *testing.B, h hash.Hash, size, num int) {
- b.StopTimer()
- h.Reset()
- data := sequentialBytes(size)
- b.SetBytes(int64(size * num))
- b.StartTimer()
- var state []byte
- for i := 0; i < b.N; i++ {
- for j := 0; j < num; j++ {
- h.Write(data)
- }
- state = h.Sum(state[:0])
- }
- b.StopTimer()
- h.Reset()
- }
- // benchmarkShake is specialized to the Shake instances, which don't
- // require a copy on reading output.
- func benchmarkShake(b *testing.B, h ShakeHash, size, num int) {
- b.StopTimer()
- h.Reset()
- data := sequentialBytes(size)
- d := make([]byte, 32)
- b.SetBytes(int64(size * num))
- b.StartTimer()
- for i := 0; i < b.N; i++ {
- h.Reset()
- for j := 0; j < num; j++ {
- h.Write(data)
- }
- h.Read(d)
- }
- }
- func BenchmarkSha3_512_MTU(b *testing.B) { benchmarkHash(b, New512(), 1350, 1) }
- func BenchmarkSha3_384_MTU(b *testing.B) { benchmarkHash(b, New384(), 1350, 1) }
- func BenchmarkSha3_256_MTU(b *testing.B) { benchmarkHash(b, New256(), 1350, 1) }
- func BenchmarkSha3_224_MTU(b *testing.B) { benchmarkHash(b, New224(), 1350, 1) }
- func BenchmarkShake128_MTU(b *testing.B) { benchmarkShake(b, NewShake128(), 1350, 1) }
- func BenchmarkShake256_MTU(b *testing.B) { benchmarkShake(b, NewShake256(), 1350, 1) }
- func BenchmarkShake256_16x(b *testing.B) { benchmarkShake(b, NewShake256(), 16, 1024) }
- func BenchmarkShake256_1MiB(b *testing.B) { benchmarkShake(b, NewShake256(), 1024, 1024) }
- func BenchmarkSha3_512_1MiB(b *testing.B) { benchmarkHash(b, New512(), 1024, 1024) }
- func Example_sum() {
- buf := []byte("some data to hash")
- // A hash needs to be 64 bytes long to have 256-bit collision resistance.
- h := make([]byte, 64)
- // Compute a 64-byte hash of buf and put it in h.
- ShakeSum256(h, buf)
- }
- func Example_mac() {
- k := []byte("this is a secret key; you should generate a strong random key that's at least 32 bytes long")
- buf := []byte("and this is some data to authenticate")
- // A MAC with 32 bytes of output has 256-bit security strength -- if you use at least a 32-byte-long key.
- h := make([]byte, 32)
- d := NewShake256()
- // Write the key into the hash.
- d.Write(k)
- // Now write the data.
- d.Write(buf)
- // Read 32 bytes of output from the hash into h.
- d.Read(h)
- }
|